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Let D be a set with a probability measure +, +(D)=1, and let K be a compact
subset of Lq(D, +), 1�q<�. For f # Lq , n=1, 2, ..., let \n( f, K )=inf & f&gn&q ,
where the infimum is taken over all gn of the form gn=�n

i=1 ai,i , with arbitrary
,i # K and ai # R. It is shown that for f # conv(K _ (&K )), under some mild restric-
tions, \n( f, K )�Cq=n(K ) n&1�2, where =n(K ) � 0 as n � �. This fact is used to
estimate the errors of certain neural net approximations. For the latter, also the
lower estimates of errors are given. � 1996 Academic Press, Inc.

1

Let K be a bounded set in a real Banach space X. Given f # X and a
natural number n, we consider approximations to f of the form �n

i=1 ai,i ,
with arbitrary ,i # K and real coefficients ai . Approximations by splines
with free knots or by rational functions with free poles can be interpreted
in this way. Here we study approximations by linear combinations of the
so-called sigmoidal functions which appear in the theory of neural
networks.

A possible approach to finding a good approximation of the above type
is to start with an approximation of the form �i # I ci,i with a set I of
arbitrary, possibly infinite, cardinality, and then reduce the cardinality to
n. The most obvious idea is to aggregate the terms by replacing clusters of
close ,i by single representatives. Another idea is to aggregate the terms in
such a way that would cause mutual cancellation of errors. The latter
approach is realized in [10], where we prove, for X=Lq , q<�, that
under rather general assumptions, for each n one can find gn=�n

i=1 ai ,i

for which & f&gn&=O(n&1�2). Recently the author learned that the case
q=2 had been considered earlier by Maurey (see [11]). Here we combine
both aggregating ideas and obtain refinements of the above results.

Our proofs are based on some elementary probabilistic considerations
(although the problem in question is, of course, non-probabilistic). We deal
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with random variables ! that can take only a finite number of real values
x1 , ..., xn with the probabilities p1 , ..., pn , pi>0, �n

i=1 pi=1. The set of
(xi , pi) is called the distribution of !; each xi is a realization of !, and
E(!)=�n

i=1 xi pi is the expectation of !. Given another random variable '
with the values y1 , ..., ym and probabilities q1 , ..., qm , one may consider the
set of all couples (xi , yj) and corresponding probabilities pi, j . If pi, j=pi qj ,
the variables !, ' are called independent. The sum !+' is defined as a ran-
dom variable taking values xi+yj with the probabilities pi, j ; the product
!', as well as sums and products of more than two random variables, are
defined in the same way. If !=� !& , '=� 'j , and each !i is independent
of each 'j , then ! and ' are also independent. For arbitrary !, ', one has
E(!+')=E(!)+E('). If !, ' are independent, then also E(!')=E(!) }
E('). These identities remain valid for !, ' taking values in the Hilbert
space H, with xi , yj , E(!), E(') # H and with !' and E(!) } E(') treated as
scalar products. The number var(!)=�i &xi&E(x)&2 pi is called the
variance of !. For a constant (non-random) c, var(c!)=c2 var(!),
var(c+!)=var(!). For independent !, ', var(!+')=var(!)+var(').

The paper is organized as follows. In 2 we prove a refinement of
Maurey's theorem for sets in the Hilbert space. In 3 we obtain an Lq result
of the same nature for q<�, which is a refinement of a similar statement
in [10], with a new, self-contained, and simpler proof. In 4 we consider
applications of these results to neural net approximations. Finally, in 5 we
show that the results of 4 cannot be essentially improved.

2

Let K be a bounded set in the Hilbert space H and let

=n(K )=inf[=>0 : K can be covered by at most n sets of diameter �=].

(1)

Theorem 1. Let 8 :=[,1 , ,2 , ...] be an arbitrary bounded sequence of
elements of H. For every f # H of the form

f=:
i

ci ,i , :
i

|ci |<�, (2)

and for every natural number n, there is a g=�i ai,i with at most n non-zero
coefficients ai and with �i |ai |��i |ci |, for which

& f&g&�2=n(8) n&1�2 :
i

|ci |. (3)
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Proof. Without loss of generality, we may assume that the sum in (2)
has only a finite number of terms, f=�N

i=1 ,i . Moreover, we may assume
that ci>0, i=1, ..., N (since f either has this property or is a difference of
two functions that have it), and that �i ci=1. For a given n and some
fixed =>=n(8), we can break the set [1, 2, ..., N ] into n non-empty subsets
I& , &=1, ..., n, so that the sets 8& :=[,i : i # I&] are of diameter �=. We
approximate each f& :=�i # I& ci,i by a linear combination �i # I& ai,i with a
small number m& of non-zero ai . To this end, we set S& :=�i # I& ci ,
m& :=[nS&]+1, and define the random elements

f� & :=(S&�m&)(�� (&)
1 + } } } +�� (&)

m&
), f� :=f� 1+ } } } +f� n , (4)

where the �� (&)
k , k=1, ..., m& , are identically distributed; each �� (&)

k equals one
of the ,i # 8& with the probability p (&)

i :=ci �S& . We further assume that all
the �� (&)

k , &=1, ..., n, k=1, ..., m& , are pairwise independent. We have

E( f� &)=
S&

m&
:
m&

k=1

E(�� (&)
k )=

S&

m&
m& :

i # I&

ci

S&
,i= f& ,

so that E( f&&f� &)=0, hence E( f&f� )=0.
It follows from the properties of the variance, since f&&f� & are obviously

independent, that

E(& f&f� &2)=var( f&f� )= :
n

&=1

var( f&&f� &)= :
n

&=1

var( f� &).

All possible realizations of each �� (&)
k are in the corresponding set 8& of

diameter �=, hence var(�� (&)
k )�=2 and

var( f� &)=
S 2

&

m2
&

:
m&

k=1

var(�� (&)
k )�

=2S 2
&

m&
�

=2

n
S& ,

consequently, E(& f&f� &2)�(=2�n) �n
&=1 S&==2�n. Therefore for some

realization f * of f� must be & f&f *&�=�- n. This completes the proof since
f * is a linear combination of at most n � S&+n=2n elements ,i and = can
be chosen arbitrarily close to =n(8). K

The above proof can be, of course, carried out without recourse to prob-
ability theory. One may say that a good approximation to f of (2) is chosen
from the finite set of possible candidates of the form f� := f� 1+ } } } +f� n , with
each f� & given by (4) and each �� (&)

k in (4) selected arbitrarily from the set 8&

(thus, there are |I1|m1 } } } |In| mn candidates). To show that there exists an f *
with a small norm & f&f *&, we assign a weight *( f� )>0 to each f� and
estimate the sum � *( f� ) & f&f� &2 over all possible f� . In this context, the
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requirement of independence of the �� (&)
k is just a special way of defining

*( f� ) by means of the numbers p (&)
i =ci �S& .

As we have already mentioned, Maurey established (3) without the fac-
tor =n(8). For a precompact 8 and n � �, we have =n(8) � 0, so our
estimate is better. Lee Jones [7] gave a non-probabilistic proof of
Maurey's result; he found an iterative algorithm that produces successively,
for n=1, 2, ..., the functions g of Theorem 1 with & f&g&=O(n&1�2).

3

Let D be a set with a probability measure +. We shall prove an analogue
of Theorem 1 for the space Lq=Lq(D, +), 1�q<�. We assume here that
8=[,1 , ,2 , ...] is a bounded set in L� (and therefore in all Lq): &,&��1,
i=1, 2, ... . Let =n(8) be the quantity (1), with the diameters of sets in the
L2 norm.

Theorem 2. For 1�q<�, every f # Lq of the form (2) and every
natural number n, there is a g=�i ai,i , with at most n non-zero coefficients
ai , �i |ai |��i |ci |, for which

& f&g&q�Cq=n(8)2�q* n&1�2 :
i

|ci | , (5)

where q* is the minimal even integer satisfying q*�q.

Lemma 1. Let !, ' be two independent, identically distributed random
variables, E(!)=E(')=0. Then E( |!|q)�E( |!&'|q), 1�q<�.

Proof. We have

E( |!|q)=:
i

|xi |
q pi=:

i }xi&:
j

xj pj }
q

pi=:
i }:j

(xi&xj) pj }
q

pi .

Applying Jensen's inequality to the inner sum, we get

E( |!|q)�:
i

:
j

|xi&xj |
q pj pi=E( |!&'|q). K

To prove Theorem 2, we proceed as in the proof of Theorem 1. We
assume that ci>0, �i ci=1. Then we fix some =>=n(8), define 8& , f& , and
f� & , and approximate the given f by the random element

f� = :
n

&=1

f� &= :
n

&=1

(S&�m&)(�� (&)
1 + } } } +�� (&)

m&
).
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For notational convenience, we now relabel arbitrarily the elements
(S&�m&) �� (&)

k , &=1, ..., n, k=1, ..., m& , into a single-index sequence !� j , so
that f� =!� 1+ } } } +!� m , where m :=m1+ } } } +mn . To estimate & f&f� &q , we
consider independent random elements 'j , j=1, ..., m, distributed identi-
cally with the corresponding !� j and independent of the latter. Let
ĝ :=�j '̂j , ûj :=!� j&'̂j , û :=f� &ĝ=�m

j=1 ûj . Since the random element f&f�
has only a finite set of realizations, we obviously have

E \|D
| f (t)&f� (t)| q d++=|

D
E( | f (t)&f� (t)|q) d+.

By Lemma 1, since E( f&f� )=E( f&ĝ)=0, for t # D,

E( | f (t)&f� (t)|q)�E( |( f (t)&f� (t))&( f (t)&ĝ(t))|q)=E( |û(t)|q).

To prove (5), we may assume that q=q*, that is, that q itself is an even
integer. Then

|û(t)|q=:
q!

q1 ! } } } qm!
û1(t)q1 } } } ûm(t)qm,

where the sum is extended to all combinations (q1 , ..., qm) of non-negative
integers with q1+ } } } +qm=q. Since [ûj (t)] are independent random
variables, we have

E( |û(t)|q)=:
q!

q1 ! } } } qm !
E(û1(t)q1) } } } E(ûm(t)qm). (6)

For each random function ûj (t), its possible values for a fixed t are of the
form (S&�m&)(,i (t)&,i $(t)), with the probabilities p (&)

i } p (&)
i $ and with ,i , ,i $

belonging to the same 8& . It follows that ûj (t) is a symmetric random
variable, that is, if y # R is one of its possible realizations, then so is &y,
with the same probability. If qj is odd, then ûj (t)qj is also symmetric, hence
E(ûj (t)qj)=0. Therefore, in (6) only those terms are non-zero in which all
q1 , ..., qm are even. Since &,i&��1, for every realization uj (t) of ûj (t) we
have &uj &��2S&�m&�2�n for j=1, ..., m. At the same time, since ,i , ,i $

belong to the same 8& , we have &,i&,i $&2�=, hence &uj&2�=�n for each
j. In every non-zero term of the sum (6) we have qj�2 for at least one j.
Consequently, in view of the above estimates,

|
D

E(û1(t)q1) } } } E(ûm(t)qm) d+�(=�n)2 (2�n)q&2=2q&2n&q=2,
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and

E(& f&f� &q
q)�E(&û&q

q)�2q&2n&q=2 :
q!

q1 ! } } } qm!
, (7)

where the sum is over the set Q of all combinations (q1 , ..., qm) of non-
negative even qj with �m

1 qj=q. This sum is obviously �q! |Q|. Now |Q|
is also the number of terms in the expansion of (x2

1+ } } } +x2
m)q�2, hence

|Q|�(1+ } } } +1)q�2=mq�2�(2n)q�2. With these estimates, we obtain from
(7) E(& f&f� &q

q)�C=2n&q�2, with C depending only on q. The proof can be
now concluded as in Theorem 1. K

More accurate estimates (see, for example, [12], Ch. 5, 98) show that
one can take Cq�2 - q in (5).

In a weaker form, without the factor =n(8), the inequality (5) was
obtained in [10]. A generalization of this weaker result to a class of
Banach spaces that includes Lq , q<�, can be found in [5]. The proofs in
[10] and [5] are based on deeper probabilistic arguments.

In some cases one can use a flexible strategy, applying the above results
only to some selected parts of the expansion (2).

Example (from [10]). Let f (t) :=��
k=1 k&r cos kt, r>0. If r>1, then

for a given n we write f=�[n�2]
k=1 +��

k=[n�2] , and for q�2 apply Theorem
2, with n�2 instead of n, to the second sum. As a result, we obtain a func-
tion g(t) :=�n

&=1 a& cos k&t for which & f&g&q=O(n&r+1�2), q�2, while
approximation of f by conventional (that is, with k&=&) trigonometric
polynomials of order n gives only O(n&r+1&1�q). For 0<r<1, we write
f=�[n�2]

k=1 +�mq

k=[n�2]+��
k=mq and apply Theorem 2 to the second sum;

this leads to & f&g&q=O(n(q�2)(1&r)&1�2). Both estimates provide the best
possible orders for the error of approximation of f by trigonometric poly-
nomials with �n frequencies. The factor =n(8) of (5) yields no improve-
ment here since the set [cos kt]�

k=1 is not precompact in Lq . For further
results in this direction see [3].

Let 0, K be two sets in a Banach space X, and let

\n(0) :=\n(0, K, X ) :=sup
f # 0

inf & f&gn&X ,

with the infimum over all gn of the form gn=�n
i=1 ai,i , ,i # K, ai # R. Let

\n*(0) be the same quantity, with the additional condition �n
i=1 |ai |�1.

Obviously, \n�\n*.
From Theorem 2 immediately follows
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Corollary. For an arbitrary set K/X, let Kc :=conv(K _ (&K )).
Then

\n*(Kc, K, Lq)�Cq=n(K )2�q* n&1�2, 1�q<� (8)

where Cq depends only on q.

Note that under the assumptions of Theorem 2, =n(K )�2 for all n.

4

Given a real-valued function f defined on a bounded set D/Rd and a
natural number n, consider approximations to f of the form

g(x)= :
n

i=1

ais(vix+bi), x # D, ai , bi # R, vi # Rd, (9)

where s: R � R is some fixed function. Approximations of this form appear
in the theory of neural networks. Here we assume for simplicity that D is
an open convex set in Rd equipped with the Lebesgue measure. A bounded
measurable function s: R � R is called sigmoidal, if s(t) � 1 for t � +�,
s(t) � 0 for t � &�. One can prove ([4], see also [6]) that for a
sigmoidal s, every f # C(D) can be uniformly approximated, with arbitrarily
small error, by functions (9) with suitable n, ai , vi , bi . The most important
s is the unit step function

_(t) :={1
0

if t�0,
if t<0.

Since obviously _(*t)=_(t), *>0, for s=_ we may assume |vi |=1 in (9)
(here and below | } | is the Euclidean norm in Rd ).

With Barron, we consider the class V=VD , the closure in Lq(D) of the
set of all functions f : Rd � R of the form

f (x)=:
i

ci_(vix+bi), :
i

|ci |�1, |vi |=1.

For d=1, D is an interval, and if f # V, then f is a function of bounded
variation: Var( f )�1 on D. Conversely, every f : R � R with Var( f )�1 is
of the form f=f0+const., f0 # V. Moreover, for d�1, if g: R � R and
Var(g)�1 on a sufficiently large interval (depending on D), then, for a suf-
ficiently small #=#(D)>0, all functions #g(vx+b), |v|=1, belong to V. In
particular, for some #>0, we have # |||&1 ei|x # V for all | # Rd, |{0.
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From this one immediately deduces, since V is a convex, symmetric and
closed set, that if the Fourier transform of some f satisfies
Cf :=#&1 �Rd ||| | f� (|)| d|<1, then f # V. Functions f with this property
have been extensively studied in [2].

For a given function s: R � R, we define the set

As :=[sv, b : sv, b(x)=s(vx+b), v # Rd, b # R].

Theorem 3. For 1�q<�, n=1, 2, ..., and every sigmoidal function s,

\n*(V, As , Lq)�Cn&1�2&1�(q*d ), 1�q<�, (10)

where C depends only on D, s(t), and q.

This theorem does not cover the case q=�. However, in [1] Barron
proves, using a deep combinatorial theorem of Dudley, that
\n*(V, As , L�)=O(n&1�2), which implies \n*=O(n&1�2) for all Lq , q<�.
As we see, for q<� this estimate can be improved. The improvement is
significant for small d and disappears when d � �. It should be noted that
the estimate (10) is given for the whole class As . For individual functions,
Theorem 2 can give a better rate depending on the behavior of the corre-
sponding =n(8).

It is sufficient to prove (10) only for the case s=_. Indeed, if s is an
arbitrary sigmoidal function, then s(*t) � _(t), * � +�, uniformly on
every set |t|�a>0; on [&a, a] the difference _(t)&s(*t) remains
bounded. It follows that &_v, b&sv, b&Lq(D) can be made arbitrarily small by
taking a sufficiently large &v&.

For s=_ we can use (8) since obviously V=(A_)c. We need an estimate
for =n(A_). We may consider only the _v, b with |v|=1. If D is contained in
some ball |x|�r, then we may assume that |b|�r for otherwise _v, b is
identically 1 or 0 on D. Suppose that |v&v1|<=, |b&b1|<= for some =>0.
If v=v1 and, say, b>b1 , then _v, b&_v1, b1

is equal to \1 on the strip
&b�vx�&b1 of width �=, and to zero elsewhere. Similarly, if b=b1 ,
then _v, b&_v1, b1

{0 only on a strip of width O(=). It follows that
&_v, b&_v1, b1

&�C - = in L2 . (Here and below C stands for various con-
stants independent of n). Therefore we obtain an O(- = )-net for A_ in
L2(D) if we find an =-net for the set P :=[(v, b) # Rd+1 : |v|=1, |b|�r]. By
a standard volume ratio argument, one needs O((1�=)d&1) elements to
build an =-net for the sphere |v|=1 and O(1�=) elements for the interval
[&r, r], which gives O(=&d ) elements for P. Consequently, one can find an
=-net for A_ in L2 consisting of O(=&2d ) elements. Thus =n(A_)=
O(n&1�(2d )), and (10) now follows from (8).

105RANDOM APPROXIMANTS



File: 640J 292609 . By:CV . Date:06:02:00 . Time:16:07 LOP8M. V8.0. Page 01:01
Codes: 2808 Signs: 1978 . Length: 45 pic 0 pts, 190 mm

5

The estimate (10) cannot be essentially improved. We show this for
q=2, in which case the right-hand side of (10) (with q*=2) is the smallest.

If d=1, D=[0, 2?], we take f0(x)=(2n)&1 sign sin nx # V[0, 2?] . One
can easily see that & f0&g&2�Cn&1 for any piecewise constant function g
with �n breaks, which shows, for s=_, that in this case \n*�\n�Cn&1,
matching the upper estimate (10). The same is true for more general s. It
is not clear, however, how to construct a similar extremal function for
d�2, so we use an indirect approach based on the concept of metric
entropy.

For a precompact set K in a metric space and =>0, the =-entropy is
defined by H=(K ) :=log2 N= , where N= is the minimal n for which there
exists an =-net for K consisting of n points. To estimate H=(K ) from below,
one can find in K a large number M= of elements that are 2=-dis-
tinguishable, that is, are at a distance >2= from each other. Then, clearly,
H=(K )�log2 M= .

We say that a sigmoidal function s: R � R belongs to the class S if (a)
s satisfies a Lipschitz condition |s(t)&s(t$)|�M |t&t$| for some M and all
t, t$ and (b) |s(t)&_(t)|�C |t|&# for some C, #>0 and all t{0.

Lemma 2. Let s=_ or s # S. Then for any =>0, the set As has a finite
=-net in L2(D) with the number of elements that grows polynomially in 1�= for
= � 0.

Proof. The case s=_ has been already considered in the proof of
Theorem 3, with the =-net of cardinality O(=&2d ). If s # S, then
&sv, b&_v, b&2�= if |v|�R=R(=)=O( |=|&#). It follows that the set [sv, b :
|v|�R] has an =-net of cardinality O(=&2d ). On the other hand, if s # S,

then &sv, b&sv$, b$&2�= for |v&v$|�C=, |b&b$|�C=. Therefore the set
[sv, b : |v|�R] has an =-net of (R�=)d elements. Thus for some l>0 and
every =>0 the whole set As has an =-net of O( |=|&l) elements. K

Let D be an open and convex subset of Rd.

Theorem 4. If s=_ or s # S, then for d�2

\n*(V, As , L2(D))�Cn&1�2&1�d&', (11)

where '>0 can be taken arbitrarily small, C=C(D, '). For d=2 a better
estimate is available:

\n*�Cn&3�4&'. (12)
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The estimate (11) can be found in Barron's paper [1]. The outlined
proof (by reducing (11) to a statistical problem of non-parametric estima-
tion) seems to be rather involved. Our derivation of (11) and (12) below
is more transparent and essentially self-contained. Note that for d=2 our
lower estimate (12) is an almost exact match to the upper estimate (10).

We need a simple lemma about the entropy of almost orthogonal
sequences in the Hilbert space H.

Lemma 3. Let K/H be a set containing m elements ,1 , ..., ,m with the
property

:
m

k=1, k{i

|(,i , ,k)|�(1�2) &,i&
2, i=1, ..., m, (13)

and let Kc :=conv(K _ (&K )). If = :=m&1�2 mini &,i &, then H=(Kc)�Cm,
where C is an absolute constant.

Proof. Consider the 2m elements g% # Kc of the form

g% :=m&1(%1,1+ } } } +%m,m), %i=\1.

We use the following elementary fact (see, for example, [9]): for each suf-
ficiently large m, there is a set 7m consisting of �(4�3)m sign vectors
%=(%i)

m
1 , so that any two vectors in 7m are different in more than [m�8]

places. If %, %$ # 7m , then

g%&g%$=m&1(!1 �1+ } } } +!r�r), !i=\2, i=1, ..., r, r�[m�8],

where [�1 , ..., �r] is a subset of [,1 , ..., ,m]. Hence

&g%&g%$&
2=m&2 :

r

j, k=1

aj, k !j !k , aj, k :=(�j , �k).

We have !2
1+ } } } +!2

r =4r, so &g%&g%$&
2�4rm&2+, where + is the mini-

mum of the quadratic form �r
j, k=1 aj, k yj yk on the unit sphere

y2
1+ } } } +y2

r =1, which is equal to the smallest eigevalue of the Gramm
matrix A=[aj, k]r

j, k=1. All the eigenvalues are contained (see, for example,
[8]) in the Gerschgorin intervals |*&aj, j |��k: k{j |aj, k |, j=1, ..., r, so
that due to (13) +�(1�2) min &�i&

2�(1�2) min &,i&
2. Therefore the g% are

O(=)-distinguishable:

&g%&g%$&�m&1
- 2r min &,i&�Cm&1�2 min &,i&.

Adjusting the constants, we obtain the statement of the lemma. K
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Proof of Theorem 4. We may assume that D = [0, ?]d, since every
convex open D/Rd contains a cube. We suppose that \n* :=
\n*(V, As , L2(D))�Cn&: for some C, :>0 and estimate H$(V ) for $ :=
Cn&:. By Lemma 2, for some l>0 the set As has an $-net A$

s consisting
of O( |$| &l ) elements. Likewise, the ball |c| 1=�n

i=1 |ci |�1 of the space l n
1

has a $-net 4$ in l n
1 consisting of $&n elements. We obtain an O($)-net for

the set of all linear combinations

g= :
n

i=1

ci,i , ,i # As :
n

i=1

|ci |=1, (14)

by taking g with ,i # A$
s , c=(ci)

n
1 # 4$. These g form a set of cardinality

�C($&n)($&l )n. Since by assumption every f # V can be approximated by
some g of (14) with an error �$, we have the inequality H$(V )�
C1n log n, with some C1 independent of n.

To estimate H$(V ) from below, we use Lemma 3. As we have noted,
there is a #>0 for which all the functions g|(x) :=# |||&1 sin |x, |{0,
belong to V. Let R :=(1�$)1�(1+d�2), $=Cn&:. The functions g| corre-
sponding to the integer vectors | with |||�R are pairwise orthogonal in
L2(D) (hence satisfy (13)), and min &g|&=O(1�R). The number of these
g| is mtCdRd. For = of Lemma 3 we have =t(R - m)&1

t$, hence
H$(V )�Cm�Cn:�(1�2+1�d ). Comparing this with the upper estimate for
H$(V ), we have C1n log n�Cn:�(1�2+1�d ). If we now assume that :=1�2+
1�d+', '>0, then for large n we come to a contradiction which implies
the inequality (11).

For d=2 we can use another construction. This time we take D to be
the disk |x| 2=x2

1+x2
2�1. Assuming that \n*�$=Cn&: we get as before

H$(V )�C1n log n. To obtain a lower estimate for H$(V), we choose an
integer N from the condition N3�2(log N)1�2

t1�$, and set h :=a�(N log N ),
with a>0 to be chosen later. We define the function g: R2 � R, by setting
g(x)=g(x1 , x2) :=sign x1 for |x1|�h�2, g(x) :=0 otherwise. Clearly,
g # (1�4) VD . Let gk, l (x) :=g(vkx+bl ), with vk :=(cos 2?k�N, sin 2?k�N ),
bl :=l�N, and let G be the set of all gk, l with k=1, ..., N, l=0, \1, ...,
\[N�2]. The cardinality of G is mtN2, and for gk, l # G, min &gk, l&t- h.

Most gk, l are pairwise orthogonal in L2(D). Indeed, let k, l be fixed. We
have gk, l = gk, l $ if l{l $. If k{k$, then gk, l = gk$, l $ for all those l $ for which
the support of the product gk, l (x) gk, l $(x) is either completely inside or
completely outside of D. It is not hard to see that for each k${k the scalar
product (gk, l , gk$, l $) is {0 for at most three values of l $; for these l $,

|(gk, l , gk$, l $)|�
h2

sin( |k&k$|�N )
�

Ch2N
|k&k$|

,
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hence for fixed (k, l ),

:
(k$, l $){(k, l )

|(gk, l , gk$, l $)|�Ch2N :
N

j=1

j &1�Ch2N log N=Cah.

It follows that condition (13) for the functions gk, l # G is fulfilled if a is
sufficiently small, and we can use Lemma 3, with ==- h�- N2

t

N&3�2(log N )&1�2
t$. We have H$(V )�Cm�CN 2, so that for $=Cn&:

must be CN2�n log n, which is possible only if :<3�4. Thus for d�2 we
have \n*�Cn&3�4&', with arbitrarily small '. K

It is unclear whether the above construction can be modified for d�3.
Another open question is the lower estimate for \n(V ), rather than for
\n*(V ). The estimates (11) and (12) remain valid if in the definition of \n*
one requires � |ci |�M, with arbitrarily large M>0 (C in (11) and (12)
may depend on M ), but it is not known if it is valid for unrestricted ci . It
would be interesting to exhibit an individual function f # V that is poorly
approximable in the sense of (11) and (12).
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